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Seismic facies analysis plays an important role in seismic interpretation and reservoir model building by offering
an effective way to identify the changes in geofacies inter wells. The selections of input seismic attributes and
their time window have an obvious effect on the validity of classification and require iterative experimentation
and prior knowledge. In general, it is sensitive to noise when waveform serves as the input data to cluster
analysis, especially with a narrow window. To conquer this limitation, the Empirical Mode Decomposition
(EMD) method is introduced into waveform classification based on SOM. We first de-noise the seismic data
using EMD and then cluster the data using 1D grid SOM. The main advantages of this method are resolution
enhancement and noise reduction. 3D seismic data from the western Sichuan basin, China, are collected for
validation. The application results show that seismic facies analysis can be improved and better help the interpre-
tation. The powerful tolerance for noise makes the proposed method to be a better seismic facies analysis tool
than classical 1D grid SOM method, especially for waveform cluster with a narrow window.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The key to reservoir modeling is the effective evaluations of rock
properties and accurate mapping of their heterogeneity. Various types
of information, including core samples, well logs, production data,
seismic data, and geological setting, are used in this model building
(de Matos et al., 2007; Rezaee, 2002). Due to the heavy cost of drilling,
there is usually no adequate number of wells to build the model for
relatively large areas. Specifically, data from well logs and cores only
represents local properties of the reservoir and it is unreliable to extrap-
olate these properties to thewhole prospectwith the absence of enough
wells. In this case, 3D seismic data plays an important role in identifying
the lateral changes of reservoirs and describing their geological features.
Changes in lithology, porosity, and fluid content lead to changes in
amplitude, frequency, lateral continuity and other seismic attributes
(de Matos et al., 2007). Thus, if changes of seismic parameters can be
identified and interpreted, some valuable information of reservoirs
may be extracted and may help in the understanding of subsurface
geology.

Seismic facies analysis aims to interpret the variations of seismic
response parameters. The so-called seismic facies can be defined as
and Gas Reservoir Geology and
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groups of seismic traces; members of the same group possess similar
wave sharp. They can be viewed as the manifestation of specific sedi-
mentary facies or geologic bodies in seismic data (John et al., 2008).
So far there have been severalmethods and techniques of pattern recog-
nition applied to the classification of seismic facies with varying degrees
of success (e.g., Jin et al., 2007; Li and Castagna, 2004; Saggaf et al.,
2003). When the geological information is unavailable, unsupervised
pattern classification has been demonstrated as a powerful method for
seismic facies analysis (de Matos et al., 2007). The self-organizing map
(SOM) (Kohonen, 2001) is certainly one of the most successful neural
network algorithms applied to unsupervised classification (e.g., Roy
et al., 2010, 2012; Singh et al., 2004; Taner et al., 2001).

Seismicwaveform and attribute values are themost commonly used
inputs to the classification process. Since the seismicwaveformcontains
integrated information of multiple attributes such as amplitude, fre-
quency and phase, it is more reliable to use this integrated data directly
to analysis and classification (Singh et al., 2004). However, there also
exist some unnecessary information such as noise and insensitive
parameters to changing geologic structure in seismic waveform. There-
fore, when we use seismic waveform as the input for classification,
the outcomes are generally more susceptible to noise and lower in
resolution. When we use attributes values as the input, if appropriate
attributes can be extracted from seismic waveform to serve as the
input, the results of classification may provide higher resolution and
lower amount of noise (Kuroda et al., 2012). However, the seismic attri-
butes selection is a difficult problem and requires utmost care because
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of its evident effect on the result of classification (Raeesi et al., 2012).
There is no criterion for the selection of which attributes can best repre-
sent the changes in rock property (Coléou et al., 2003). This leads to
more uncertainty about whether the seismic attributes we used are
the optimal one to the local structural feature and what is the relation-
ship between them. Therefore how to enhance the accuracy of SOM
clustering while preserving its reliability has been a research topic in
seismic facies analysis.

Seismic data volumes are significantly noisy and greatly redundant.
The classification can be greatly optimized by using appropriate prepro-
cessing on seismic data (Coléou et al., 2003). de Matos et al. (2007)
applied time-frequency techniques to the SOM clustering by using the
WTMMLA curves derived from trace singularities as the input data.
Saraswat and Sen (2012) employed Artificial Immune System (AIS) to
the compaction of seismic data and use the reduced data for SOM
processing. Both of them focus on the reprocessing of seismic data in
order to obtain an excellent input to the SOM clustering.

Empirical Mode Decomposition (EMD), as a new decomposition
method for analyzing nonlinear and non-stationary data introduced
by Huang et al. (1998), has been increasingly used for seismic signals
analysis and demonstrated great potential in this application.
(e.g., Battista et al., 2007; Wen et al., 2009; Xue et al., 2013, 2014). In
this method, complicated seismic signals can be decomposed into a
series of Intrinsic Mode Functions (IMFs) in the temporal domain
(Xue et al., 2014). In essence, this decompositionmethod can be consid-
ered as a dyadic filter bank that serves a similar function to wavelet
transform (Flandrin et al., 2004). But unlike wavelet transform required
for pre-set base function, it is an adaptive data-driven method based on
the local characteristic of data in time scale. Therefore, EMD method
offers some distinct advantages over wavelet transform used for noise
reduction and resolution enhancement of seismic data (Battista et al.,
2007; Ehrhardt et al., 2012; Huang et al., 2011; Xue et al., 2013).

In this study, we introduce EMD method into unsupervised seismic
facies analysis based on SOM. The seismic signals are decomposed by
EMD to obtain the featured subsignals reconstructed by a number of
IMFs that highlight the fine details and smooth noise. This step is to
remove spikes, reduce noise and improve resolution of seismic data.
Then, the reconstructed seismic subsignals are allowed as the input to
SOM clustering and the useful geological information can be extracted
from the results of clustering. In this paper, we will first introduce the
concept of SOM and EMD, and then test our method on synthetic and
real data.

2. Principle and methods

2.1. Empirical Mode Decomposition (EMD)

EMD aims to obtain IMF which is a monofrequency signal. Thus IMF
has well-behaved Hilbert transforms and the physical meaning. Each
IMF is defined to meet the following conditions (Huang et al., 1998):

(1) The number of zero-crossings and extrema is the same;
(2) The mean value of the upper envelops and the lower envelops is

equal to zero.

EMD is carried out by a sifting process. The decomposition of a signal
into IMFs by EMD is performed as follows:

1. Find out the maxima and the minima of the original signal.

2. Construct the upper envelops and the lower envelops of the signal.
Generally the cubic spline method is used.

3. Obtain the mean values by averaging the upper and the lower
envelopes.

4. Subtract the mean values from the original signal. Ideally, the first
IMF component is produced. If the signal obtained by subtracting
the mean values from the original signal does not meet the IMF
condition, repeat the steps 1–4 to this signal until the first IMF com-
ponent is obtained.

5. Subtract the first IMF component from the original signal and carry
out the steps 1–4 to the residual component until all the IMFs are
obtained.

After decomposition, the original signal can be expressed as a sum of
IMFs and the residual component which is usually a monotonic
function.

From the sifting process of EMD, we can find that the different IMF
has different frequency ranges and probably highlights different details.
For seismic data, the subsignal reconstructed by the selected IMFswhich
is the main component of the original seismic signal can highlight the
fine details and reduce the noise.

2.2. Classification using SOM and EMD

Seismic facies analysis is an efficient measure of predicting the
underlying structure and depositional environment by recognizing
and analyzing the characteristics of a group of seismic reflections. The
SOM, as a type of unsupervised learning (Kohonen, 2001), has been
widely used in seismic facies analysis (de Matos et al., 2007; Roy et al.,
2010; Saraswat and Sen, 2012; Taner et al., 2001). The EMD method is
an excellent data reconstruction algorithm that removes the noise and
preserves essential features of original seismic data. In our method, we
introduce the EMD method into seismic facies analysis based on SOM
to obtain an enhancement.

The workflow of proposed method is illustrated in Fig. 1. We first
decompose seismic data into IMFs using EMD method. Then, the IMFs
which contain the fine information and smooth noise are chosen to
reconstruct a new seismic data. Next, we allow the reconstructed data
as the input to SOM training and clustering with different numbers of
facies. Comparing the facies maps, the optimal facies number can be
defined.

In this workflow, the selection of the IMFs and facies numbers
should be noticed. The proper selection of IMFs usually results in a bet-
ter de-noising effect on seismic data. Thus it is not hard to see that the
selection of IMFs directly affects the quality of the classification based
on our method. Each original seismic trace usually produces a series
of IMFs. Then, we should analyze the features of the IMFs displayed as
seismic sections and the correlation coefficients between each IMF
and original seismic trace. The IMFswhich have higher correlation coef-
ficients and greater similarity to the original seismic trace on sections
will be selected for reconstruction. The deserted IMFs tend to have
low correlation and a lot of noise which is evident from the seismic
sections.

The number of classes, i.e., the number of seismic facies, has impor-
tant effects on the classification process and should be estimated very
carefully (Raeesi et al., 2012). A low number of classes can only offer a
very rough classification in which some important information may be
obscured and the facies of interest usually cannot be identified. Con-
versely, the high number of classes can enhance details and accuracy
of the classification; however, it also produces lots of redundant facies
which might complicate the interpretation. In unsupervised seismic
facies analysis, one can use more seismic facies than the number of ex-
pectant geofacies in the researched region (Raeesi et al., 2012). Because
the additional facies could be required to represent the noise (Roy et al.,
2012), including background noise and horizon interpretation noise
caused by interpretation errors or time displacement, and the transition
zone between the main facies. The noises are represented by one or
several facies with haphazard distribution; while the transition zone's
facies usually distribute along the periphery of the main facies. The
best situation is that with the increasing number of classes, the main
facies remain about the same andonly thenumber of unnecessary facies
is in the growth. Therefore, the estimation of the number of classes in
study area requires iterative testing and prior knowledge.



Fig. 1.Workflow of waveform classification based on SOM and EMD.

Fig. 2. Simple stratum model composed by layers with different P-wave velocity.
(a) Simple carbonate system model; (b) synthetic seismic data; (c) constructed seismic
data processed by EMD.
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3. Synthetic data

To illustrate the effectiveness of the proposedmethod,we apply it in
a synthetic seismic data shown in Fig. 2b, which is derived froma simple
carbonate systemmodel shown in Fig. 2a. The geofacies thatwewant to
identify are lying in the second layer (from the top) and marked with
their P-wave velocities of 5400 m/s, 5600 m/s, and 5800 m/s (Fig. 2a).
Fig. 2c shows the processed section constructed by IMF2 and IMF3. Be-
cause our original synthetic section is produced in an ideal situation, the
processed section does not show any improvement except removing
spikes and smoothing the time displacement at the interface of velocity
in target layer. Fig. 3 shows the seismic sections of the original synthetic
data (a), deserted IMF1 (b) and selected IMF2 (c). Lots of noise is evi-
dent from the section of IMF1 which has a low correlation coefficient.
Conversely, the section of IMF2 displays even less noise than original
synthetic data and has a high correlation coefficient. In this way, we
finally select the IMF2 and 3 and desert the IMF1, 4, 5 and 6.
We begin this testing by selecting a time window of 28 ms around
the base of target area denoted by the red line, i.e., the zone between
the blue lines show in Fig. 2b. Then the waveform classification is
performed iteratively with the different numbers of classes, using the
original data and the reconstructed data of the specific time window
as the input respectively.

Fig. 4a, b, and c illustrate the results of the classifications for original
data with the facies numbers of 3, 4, and 6; Fig. 4d, e, and f show the
results from the data processed by EMD with the corresponding num-
bers of the facies. Fig. 4a indicates that the result of waveform classifica-
tion is very sensitive to time displacement. In our synthetic, the time
displacement is derived from velocity contrast of the horizontal layer.
When we use three classes in seismic facies analysis which is equal to
the number of predefined geofacies, only two geofacies can be identify
and the time displacement occupies one of the seismic facies (Fig. 4a).
When we use four classes, all the geofacies can be identify and the
time displacement also occupies one of the seismic facies (Fig. 4b).

image of Fig.�2


Fig. 3. Seismic sections of (a) the original synthetic data, (b) deserted IMF1 and
(c) selected IMF2 (c).

Fig. 4. Faciesmaps of synthetic seismic datawith different facies number and input; (a), (b), and
maps with 3, 4, and 6 facies generated by using SOM and EMD.
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The horizon interpretations of real seismic data are almost noisy and
contain lots of time displacement. Therefore the additional facies are re-
quired to represent such interpretation noise in seismic facies analysis.
Fig. 4c shows the seismic facies map with six classes. Compared with
the facies map in Fig. 4b, we can see that the added two facies are still
used to represent the interpretation noise and the noise's facies appear
a little wider in Fig. 4c. Thus, it is easy to see that using excessive facies
tend to result in more noise and the optimum number of the classes ap-
pears when themain facies begin to become steady with the increasing
classes (four in this testing).

Comparing the facies maps on the left and the right with the same
number of classes in Fig. 4, the facies maps on the right confirm better
performance due to the narrower width of noise' facies, especially the
one with four facies (Fig. 4e) presents a perfect effect.

This testwas repeated by addingGaussian noise to original synthetic
data. Fig. 5a shows synthetic section with Gaussian noise. The IMF3, 4
and 5, which have the highest correlation coefficients with the noise
section, are selected to reconstruct a new section shown by Fig. 5b.
Obviously, the section processed by EMD has much less noise. Sure
enough, the noise section gave a bad result of cluster analysis shown
in Fig. 5c. Meanwhile, the reconstructed section provided a better result
shown in Fig. 5d. The above tests confirm that our method has a good
performance in the application to seismic facies analysis for synthetic
data and has a good noise tolerance.

4. Application to real seismic data

We apply our method to a real 3D seismic data set from the western
Sichuan basin, China (Fig. 6). This set acquisition was carried out in the
NE-SW direction within an area of nearly 150 km2. Its CMP line spacing
is nearly 25 m and the recording length is 5.8 s with 2 ms of sampling
rate. The dominant frequency of target zone is about 28Hz. There are
three wells inside the survey. Well A is located in the east of the survey,
well B is in the center and well C is in the west. The target geological
formation is the top of Leikoupo formation inMiddle Triassic. In theMid-
dle Triassic period, the western Sichuan basin was covered by a warm,
shallow sea with plentiful marine life. With the long-term regression in
the late stage of Middle Triassic, the carbonate rocks of most area ex-
posed the surface and were transformed by leaching and weathering.
Therefore, large scale weathering crust and karstic reservoirs were
(c) faciesmapswith 3, 4, and 6 facies generated by using SOM alone. (d), (e), and (f) facies

image of Fig.�3
image of Fig.�4


Fig. 5. (a) Syntheticmodel sectionwhich added theGaussian noise to; (b) reconstructed section processed by EMD; (c) faciesmap of noise section; (d) faciesmap of reconstructed section.
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widespread in this area. The weathering occurred in the study area was
not intense and the weathering crust karst reservoirs was only devel-
oped in partial region. Well A and C have approximately 70–80 m of
weathering crust rich zone in the top of Leikoupo formation. Unlike the
dense, non-porous surrounding limestone, karstic reservoirs have
Fig. 6.Map from Google Maps, with blue area marking th
relatively high porosity and lots of solution pores and cavities, accompa-
nied by a series of high angle fractures (Fig. 7). These features of reservoirs
are demonstrated clearly on the cores and logs ofwell A andwell C.While
the available cores and well logs (relatively high density and velocity)
from well B give an indication of poor weathering crust (Fig. 8).
e location of the field covered by 3D seismic data set.

image of Fig.�5
image of Fig.�6


Fig. 7. General stratigraphic column of well A. Region of Interest is between the red lines. Solution pores and cavities are clearly present in photos.
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We intend to map the weathered crust area which is favorable
for reservoir development using EMD-based SOM methods. The
weathering crust rich formation in study area has a big variation of
lateral thickness due to the differences of weathering intensity. The
thickness is about 10–80 m down from the top of Leikoupo formation.
Therefore we intend to use the top of Leikoupo formation, i.e., reservoir
top to limit the time window. It will be selected in ranges from 0 ms to
10 ms (about 30 m in depth domain) beneath the reservoir top. Fig. 9
(section A) shows the seismic section intersecting known wells and the
top (yellow line) and base (blue line) of interpreted karst reservoir.
The seismic event, that represents the reservoir top and the surface
of unconformity, presents excellent lateral continuity and stability; its
horizon interpretation has high reliability and low noise.

Each original seismic trace will produce about six to seven IMFs. By
analysis, themain components of the original seismic trace are reflected
in the first three IMFs. Therefore, the first three IMFs of the original
seismic volume are selected for reconstruction. The method of the
IMFs selection is mentioned above and more details can be found in
Xue et al. (2013, 2014). Additionally, this process will not change the
size of the original data set. Fig. 9 shows the same seismic random

image of Fig.�7


Fig. 8. General stratigraphic column of well B. Region of Interest is between the red lines. Photo shows the core of compact limestone.
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lines intersecting known wells from original seismic data (section A)
and the data processed by EMD (section B). From Fig. 9, we can see
that section B preserves the main features of section A and has a clearer
distinction between events both in horizontal and vertical direction. This
is useful for waveform cluster analysis to suppress the interference of
noise.

The facies map is not the end product interpretation. We should
transform seismic facies map into geofacies map based on well con-
straint, depositional setting, and some other useful information. In this
study, we first use well data to define the geofacies corresponding to
seismic facies into well locates. Then section feature, ancient landform,
and depositional setting are employed to verify the conclusion. Fig. 10
illustrates the thickness between karst reservoir top and base. For a
plain restricted platformunderweathering action, the smaller sedimen-
tary thickness is usually caused byweathering and denudation. This can
be used to verify the reliability of the results of the classification.

We clustered our seismic data set with four classes, because the
main facies still remained about the same if we used classes over 4.

image of Fig.�8


Fig. 9. Section A is a through-well seismic line from real seismic data. The yellow line denotes the reservoir top interpretations and blue line denotes the base. The base map in the lower-
right corner shows the location of the line. Section B is the same line processed by EMD.
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Fig. 11 shows the results of seismic facies analysis with a time win-
dows of 10 ms beneath the reservoir top. Fig. 11a illustrates the
results of the classifications for original data; Fig. 11b shows the
results from the data processed by EMD. It can be observed in
Fig. 11 that well A and Cwhose cores have the obvious characteristics
of weathered crust fall in the areas occupied by facies numbers 1 and
2 (numbers written on the right side of the color bar). From seismic
point of view, some reflectors of these areas present lower energy,
weak continuity and up dip pinch-out which is the typical seismic fa-
cies belong to weathering crust shown in Fig. 12. Additionally, there
is a great similarity between the distributions of these areas and the
small thickness regions shown in Fig. 10 (warm colors). Therefore,
facies numbers 1 and 2 are proved to indicate the weathering crust
areas. The events of the facies No. 3 present excellent lateral continu-
ity and higher energy (Fig. 12). These are typical seismic features of
Fig. 10. Thickness o
tidal flat, so we speculate that facies No. 3 denotes the tidal flat.
From the core of well B, we learn that facies No.4 indicates the lagoon
of restricted platform.

Fig. 11a shows the low resolution and strong presence of noise. It
provides a rough result of classification from which the boundary of
seismic facies is hardly identifiable. In contrast, the facies map showed
in Fig. 11b is better in the delimitation of the seismic facies because of
the lower amount of noise. The faults and three main facies aforemen-
tioned can be easily identified from the latter map. More importantly
the distributions of facies No. 1 and 2 in Fig. 11b present a better similar-
ity to the small thickness regions shown in Fig. 10. This shows that the
enhancement of our method is reliable for real seismic. By comparison,
our method can be demonstrated to have an outstanding performance
in noise reduction and resolution enhancementwith the presupposition
of high reliability.
f the reservoir.

image of Fig.�9
image of Fig.�10


Fig. 11. Facies maps of real seismic data with different inputs. (a) Facies maps from original seismic data. (b) Facies maps from reconstructed seismic data using EMD.
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5. Conclusion

The EMD-based SOM method is discussed for waveform classifica-
tion. The seismic subsignals are reconstructed by the selected IMFs
which reflect the main information of the original signal and contain
more fine details and less noise. Thus reconstructed data set from
EMD processing preserves main feature of the original seismic set.
Moreover, the computing speed of this process is very fast. Model test
and application of the proposedmethod to real seismic data fromwest-
ern Sichuan basin, China show that the proposed method has better
effects in waveform classification than the standard SOMmethod does.
It can be seen from the comparison of the results that the traditional
Fig. 12. Typical section
waveform clustering used SOM is susceptible to interpretation noise
(time displacement) due to the phase change. This may interfere with
the recognition of geofacies and geologic features such as faults and frac-
tures. However, our proposedmethod is less sensitive to noise especially
for waveform cluster analysis with a narrowwindow. It can be a power-
ful tool to offer a valid reference for fine reservoir description.
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